Complementary contributions of prefrontal neuron classes in abstract numerical categorization.

نویسندگان

  • Ilka Diester
  • Andreas Nieder
چکیده

The primate prefrontal cortex (PFC) plays a cardinal role in forming abstract categories and concepts. However, it remains elusive how this is accomplished and to what extent the interaction of functionally distinct neuron classes underlies this representation. Here, we inferred the major cortical cell types, putative pyramidal cells, and interneurons by characterizing the waveforms of action potentials recorded in monkeys performing a cognitively demanding numerosity categorization task. Putative interneurons responded much faster than cells classified as pyramidal neurons and exhibited a higher reliability of category discrimination, whereas putative pyramidal cells showed a higher degree of category selectivity. An analysis of the numerosity tuning profiles and the temporal interactions of adjacent neurons indicated that inhibitory input by putative interneurons shapes the tuning to numerical categories of putative PFC pyramidal cells. These findings favor feedforward mechanisms subserving cognitive categorization and help to clarify cellular interactions in PFC microcircuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine Receptors Differentially Enhance Rule Coding in Primate Prefrontal Cortex Neurons

Flexibly applying abstract rules is a hallmark feature of executive functioning represented by prefrontal cortex (PFC) neurons. Prefrontal networks are regulated by the neuromodulator dopamine, but how dopamine modulates high-level executive functions remains elusive. In monkeys performing a rule-based decision task, we report that both dopamine D1 and D2 receptors facilitated rule coding of PF...

متن کامل

Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density

Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...

متن کامل

Representation of the quantity of visual items in the primate prefrontal cortex.

Deriving the quantity of items is an abstract form of categorization. To explore it, monkeys were trained to judge whether successive visual displays contained the same quantity of items. Many neurons in the lateral prefrontal cortex were tuned for quantity irrespective of the exact physical appearance of the displays. Their tuning curves formed overlapping filters, which may explain why behavi...

متن کامل

Is Top-Down Control from Prefrontal Cortex Necessary for Visual Categorization?

The brain mechanisms underlying visual object categorization remain unclear. In this issue of Neuron, Minamimoto and colleagues introduce a novel task that associates each category with a different incentive value, and they demonstrate that it can be learned within a single session even after ablation of the lateral prefrontal cortex.

متن کامل

Different Levels of Category Abstraction by Different Dynamics in Different Prefrontal Areas.

Categories can be grouped by shared sensory attributes (i.e., cats) or a more abstract rule (i.e., animals). We explored the neural basis of abstraction by recording from multi-electrode arrays in prefrontal cortex (PFC) while monkeys performed a dot-pattern categorization task. Category abstraction was varied by the degree of exemplar distortion from the prototype pattern. Different dynamics i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 31  شماره 

صفحات  -

تاریخ انتشار 2008